
1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분
1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분 - Page 5 For traffic sign classification, the GTSRB [27] and TT100K [32] datasets are used. For the GTSRB→TT100k scenario, we train the model on GTSRB and report th..

1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분 아래의 논문과 동일. GTSDB 데이터셋에 대해 추가로 실험. Focal Loss를 통한 큰 성능 향상. https://arclab.tistory.com/277?category=759685 [***]Small Object Detection Using Deep Feature Pyramid Net..

1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분 -Page 1 In comparison with normal detection tasks, the traffic signs oc- cupy small proportion of each image in the real-driving scenario [7]. -Page 3 There are thr..

1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분 -Page 5 -Page 8 We evaluated our method on the Tsinghua–Tencent 100K test dataset. It achieved 87.0% mAP at a Jaccard similarity coefficient of 0.5 and the average ..

1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분 -Page 2 We are the first to present a network that performs joint traffic light and sign detection. Our architecture is suitable for autonomous car deployment becau..

1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분

1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분 - Page 4-5 To detect small objects from a high-resolution image, we design a two-stage architecture as shown in Fig. 3. For region proposal stage, two top-down feat..

1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분 - Page 1-2 - Page 4 To verify the effectiveness of our framework, we perform experiments on Tsinghua-Tencent 100K traffic sign dataset [22].

1. 인용 논문 Traffic-sign detection and classification in the wild Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, Shimin Hu; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110-2118 2. 인용 부분
- Total
- Today
- Yesterday
- 2D Game
- sentence test
- ate
- SSM
- some time ago
- Game Engine
- OST
- #ELK Stack
- #ApacheSpark
- Mask R-CNN
- Memorize
- project
- belief
- English
- #TensorFlow
- ILoop Engine
- Jekyll and Hyde
- #REST API
- Worry
- docker
- 도커
- Badge
- Ragdoll
- Library
- Sea Bottom
- aws #cloudfront
- GOD
- Physical Simulation
- #ApacheZeppelin
- Meow
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |