티스토리 뷰

[업데이트 2017.10.31 13:13]


최종 소스 코드는 아래와 같으며, 코드 로직은 다음과 같이 수행됩니다.

Logistic Regression을 사용하여 training을 진행하였고, feature scaling을 사용하였습니다.

Training data는 크게 training data, cross-validation data, test data로 나누어 evaluation을 하도록 하였습니다.

그 외에 hyper parameter를 통해 튜닝 할 수 있도록 구현 하였습니다.


1. Run Pre-Processing.

2. Load the CSV Files to Tensorflow.

3. Training the training data.

4. Run cross-validation data from the training data. 

   Separate the training data into a training data set, a cross-validation set and test data set.

5. Predict the trained model with the test data from Kaggle.

6. Create a submission file for Kaggle.


아래는 Kaggle에 제출후 받은 Score입니다. 



hyper parameter 튜닝 없이 간단히 submit해보았는데, 성능 향상을 위한 방법을 향후 더 연구해볼 예정입니다.


<Source Code>

 
import asyncml as ml
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import csv

feature_size = 7
max_epochs = 400
train_batch = 10000
test_batch = 10000
shuffle = False
shuffle_size = 10000
learning_rate =0.1
skip_size = 1
threshold = 0.5
hyper_lambda = 0.01

training_cv_dataset_record_defaults = [
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([""], dtype=tf.string),
tf.constant([0], dtype=tf.float32),
tf.constant([""], dtype=tf.string),
tf.constant([0], dtype=tf.float32)
]

test_dataset_record_defaults = [
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([0], dtype=tf.float32),
tf.constant([""], dtype=tf.string),
tf.constant([0], dtype=tf.float32),
tf.constant([""], dtype=tf.string),
tf.constant([0], dtype=tf.float32)
]

def decode_csv_for_training_cv_set(line):
    PassengerId, labels, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked = tf.decode_csv(line,
                                                                                                             training_cv_dataset_record_defaults)


    # features = PassengerId, Pclass, Age, SibSp, Parch, Fare, labels
    features = Pclass, Name, Sex, Age, SibSp, Parch, Embarked, labels

    #print(features)

    features = tf.reshape(features, [-1])

    return features


def decode_csv_for_test_set(line):
    PassengerId, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked = tf.decode_csv(line,
                                                                                                             test_dataset_record_defaults)

    #features = PassengerId, Pclass, Age, SibSp, Parch, Fare
    features =  Pclass, Name, Sex, Age, SibSp, Parch, Embarked

    #print(features)

    features = tf.reshape(features, [-1])

    return features


def line_pre_process_train(line):
    # Name
    Name = line[3]

    if "Mr." in Name:
        line[3] = 0
    elif "Mrs." in Name:
        line[3] = 1
    elif "Miss." in Name:
        line[3] = 2
    elif "Master." in Name:
        line[3] = 3
    elif "Rev." in Name:
        line[3] = 4
    elif "Dr." in Name:
        line[3] = 5
    elif "Mlle." in Name:
        line[3] = 6
    elif "Col." in Name:
        line[3] = 7
    elif "Lady." in Name:
        line[3] = 8
    elif "Don." in Name:
        line[3] = 9
    elif "Mme." in Name:
        line[3] = 10
    elif "Ms." in Name:
        line[3] = 11
    elif "Sir." in Name:
        line[3] = 12
    elif "Capt." in Name:
        line[3] = 13
    elif "the Countess." in Name:
        line[3] = 14
    elif "Jonkheer." in Name:
        line[3] = 15
    elif "Major." in Name:
        line[3] = 16
    else:
        line[3] = 17

    # Sex
    Sex = line[4]

    if Sex == "male":
        line[4] = 0
    elif Sex == "female":
        line[4] = 1

    # Age
    Age = 0

    try:
        Age = float(line[5])
    except ValueError:
        pass

    if Age < 1:
        line[5] = 0
    elif Age >= 1 and Age <= 9:
        line[5] = 1
    elif Age >= 10 and Age <= 19:
        line[5] = 2
    elif Age >= 20 and Age <= 29:
        line[5] = 3
    elif Age >= 30 and Age <= 39:
        line[5] = 4
    elif Age >= 40 and Age <= 49:
        line[5] = 5
    elif Age >= 50 and Age <= 59:
        line[5] = 6
    elif Age >= 60 and Age <= 69:
        line[5] = 7
    elif Age >= 70 and Age <= 79:
        line[5] = 8
    elif Age >= 80 and Age <= 89:
        line[5] = 9
    else:
        line[5] = 10

    # Embarked
    Embarked = line[11]

    if Embarked == "S":
        line[11] = 0
    elif Embarked == "C":
        line[11] = 1
    elif Embarked == "Q":
        line[11] = 2
    else:
        line[11] = 3


    return line

def line_pre_process_test(line):
    # Name
    Name = line[2]

    if "Mr." in Name:
        line[2] = 0
    elif "Mrs." in Name:
        line[2] = 1
    elif "Miss." in Name:
        line[2] = 2
    elif "Master." in Name:
        line[2] = 3
    elif "Rev." in Name:
        line[2] = 4
    elif "Dr." in Name:
        line[2] = 5
    elif "Mlle." in Name:
        line[2] = 6
    elif "Col." in Name:
        line[2] = 7
    elif "Lady." in Name:
        line[2] = 8
    elif "Don." in Name:
        line[2] = 9
    elif "Mme." in Name:
        line[2] = 10
    elif "Ms." in Name:
        line[2] = 11
    elif "Sir." in Name:
        line[2] = 12
    elif "Capt." in Name:
        line[2] = 13
    elif "the Countess." in Name:
        line[2] = 14
    elif "Jonkheer." in Name:
        line[2] = 15
    elif "Major." in Name:
        line[2] = 16
    else:
        line[2] = 17

    # Sex
    Sex = line[3]

    if Sex == "male":
        line[3] = 0
    elif Sex == "female":
        line[3] = 1

    # Age
    Age = 0

    try:
        Age = float(line[4])
    except ValueError:
        pass

    if Age < 1:
        line[4] = 0
    elif Age >= 1 and Age <= 9:
        line[4] = 1
    elif Age >= 10 and Age <= 19:
        line[4] = 2
    elif Age >= 20 and Age <= 29:
        line[4] = 3
    elif Age >= 30 and Age <= 39:
        line[4] = 4
    elif Age >= 40 and Age <= 49:
        line[4] = 5
    elif Age >= 50 and Age <= 59:
        line[4] = 6
    elif Age >= 60 and Age <= 69:
        line[4] = 7
    elif Age >= 70 and Age <= 79:
        line[4] = 8
    elif Age >= 80 and Age <= 89:
        line[4] = 9
    else:
        line[4] = 10

    # Embarked
    Embarked = line[10]

    if Embarked == "S":
        line[10] = 0
    elif Embarked == "C":
        line[10] = 1
    elif Embarked == "Q":
        line[10] = 2
    else:
        line[10] = 3


    return line

ml.csv_pre_process('train.csv', 'train_pre_processed.csv', _func_line=line_pre_process_train)
ml.csv_pre_process('test.csv', 'test_pre_processed.csv', _func_line=line_pre_process_test)

filenames = tf.constant(["train_pre_processed.csv","test_pre_processed.csv"])

training_cv_dataset = tf.contrib.data.TextLineDataset(filenames[0]).skip(skip_size).map(decode_csv_for_training_cv_set).batch(train_batch).repeat(max_epochs)

if shuffle == True:
    training_cv_dataset.shuffle(shuffle_size)

training_cv_iterator = training_cv_dataset.make_initializable_iterator()
training_batch_features = training_cv_iterator.get_next()

test_dataset = tf.contrib.data.TextLineDataset(filenames[1]).skip(skip_size).map(decode_csv_for_test_set).batch(test_batch)

test_iterator = test_dataset.make_initializable_iterator()
test_batch_features = test_iterator.get_next()


# Define a model
X = tf.placeholder(tf.float32, [None, feature_size])
y = tf.placeholder(tf.float32, [None, 1])
Lambda = tf.placeholder(tf.float32)

W = tf.Variable(tf.zeros([feature_size, 1]), name='weight')
b = tf.Variable(tf.zeros([1]), name='bias')

logits = tf.matmul(X, W) + b
hypothesis = tf.sigmoid(logits)
#hypothesis = tf.nn.relu(logits)
cost_logits = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=y)
#hypothesis = tf.nn.softmax(logits)
#cost_logits = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)
cost_op = tf.reduce_mean(cost_logits) + Lambda * tf.reduce_mean(tf.square(W))
#cost_op = -tf.reduce_mean(y*tf.log(hypothesis) + (1-y)*tf.log(1-hypothesis)) + Lambda * tf.reduce_mean(tf.square(W))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost_op)
#optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate).minimize(cost_op)
#optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost_op)
predicted = tf.cast(hypothesis >= threshold, tf.float32)
#predicted = tf.argmax(hypothesis, 1)
#predicted = tf.argmax(hypothesis, 1)
#actual = y

accuracy_op = tf.metrics.accuracy(labels=y, predictions=predicted)
precision_op = tf.metrics.precision(labels=y, predictions=predicted)
recall_op = tf.metrics.recall(labels=y, predictions=predicted)


init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())

with tf.Session() as sess:
    sess.run(init_op)

    sess.run(training_cv_iterator.initializer)

    cv_data = 0
    test_data = 0
    iteration = 0
    mu = 0
    sigma = 0
    '''
    TRAINING SESSION
    '''
    while True:
        try:
            training_features = sess.run(training_batch_features)

            train_data = cv_data = training_features
            train_data, cv_data, test_data = ml.map_dataset(training_features, 0.6, 0.2, 0.2)

            X_data = train_data[:, 0:-1]
            y_data = train_data[:, [-1]]

            X_data, mu, sigma = ml.feature_scaling(X_data)

            sess.run(optimizer, feed_dict={X: X_data, y: y_data, Lambda: hyper_lambda})

            cost =  sess.run(cost_op, feed_dict={X: X_data, y: y_data, Lambda: hyper_lambda})
            accuracy,accuracy_update_op = sess.run(accuracy_op,
                                                   feed_dict={X: X_data, y: y_data, Lambda: hyper_lambda})
            precision, precision_update_op = sess.run(precision_op,
                                           feed_dict={X: X_data, y: y_data, Lambda: hyper_lambda})
            recall, recall_update_op = sess.run(recall_op,
                                           feed_dict={X: X_data, y: y_data, Lambda: hyper_lambda})
            iteration += 1
            print("{} Training >> Loss: {:.3f}\tAccuracy: {:.2%}\tPrecision: {:.2%}\tRecall: {:.2%}".format(iteration, cost, accuracy, precision, recall))


        except  tf.errors.OutOfRangeError:
            print("Training Session is done!\n")
            break

    '''
       CROSS-VALIDATION SESSION
    '''

    X_cv_data = cv_data[:, 0:-1]
    y_cv_data = cv_data[:, [-1]]

    for i in range(feature_size):
        X_cv_data[:, i] = (X_cv_data[:, i] - mu[i]) / sigma[i]


    num_of_rows = np.size(X_cv_data, 0)

    sess.run(tf.shape(X), feed_dict={X: np.zeros(dtype=np.float32, shape=(num_of_rows, feature_size))})

    cost = sess.run(cost_op, feed_dict={X: X_cv_data, y: y_cv_data, Lambda: 0.0})
    accuracy, accuracy_update_op = sess.run(accuracy_op,
                                            feed_dict={X: X_cv_data, y: y_cv_data, Lambda: 0.0})
    precision, precision_update_op = sess.run(precision_op,
                                              feed_dict={X: X_cv_data, y: y_cv_data, Lambda: 0.0})
    recall, recall_update_op = sess.run(recall_op,
                                        feed_dict={X: X_cv_data, y: y_cv_data, Lambda: 0.0})

    print("Cross-Validation >> Loss: {:.3f}\tAccuracy: {:.2%}\tPrecision: {:.2%}\tRecall: {:.2%}".format(cost, accuracy, precision, recall))

    print("Cross-Validation Session is done!\n")

    '''
       TEST SESSION
    '''
    sess.run(test_iterator.initializer)

    while True:
        try:
            test_features = sess.run(test_batch_features)

            X_test_data = test_data[:, 0:-1]
            y_test_data = test_data[:, [-1]]

            for i in range(feature_size):
                test_features[:, i] = (test_features[:, i] - mu[i]) / sigma[i]
                X_test_data[:, i] = (X_test_data[:, i] - mu[i]) / sigma[i]

            num_of_rows = np.size(X_test_data, 0)

            sess.run(tf.shape(X), feed_dict={X: np.zeros(dtype=np.float32, shape=(num_of_rows, feature_size))})

            cost = sess.run(cost_op, feed_dict={X: X_test_data, y: y_test_data, Lambda: 0.0})
            accuracy, accuracy_update_op = sess.run(accuracy_op,
                                                    feed_dict={X: X_test_data, y: y_test_data, Lambda: 0.0})
            precision, precision_update_op = sess.run(precision_op,
                                                      feed_dict={X: X_test_data, y: y_test_data, Lambda: 0.0})
            recall, recall_update_op = sess.run(recall_op,
                                                feed_dict={X: X_test_data, y: y_test_data, Lambda: 0.0})

            print("Test >> Loss: {:.3f}\tAccuracy: {:.2%}\tPrecision: {:.2%}\tRecall: {:.2%}".format(cost,
                                                                                                                 accuracy,
                                                                                                                 precision,
                                                                                                                 recall))

            _predicted = sess.run(predicted, feed_dict={X: test_features, Lambda: 0.0})

            num_of_rows = np.size(_predicted, 0)

            print("Test Session is done!\n")

            f = open('my_submission.csv', 'w', encoding='utf-8', newline='')
            wr = csv.writer(f)

            wr.writerow(["PassengerId", "Survived"])

            for i in range(num_of_rows):
                wr.writerow([i+892,(int)(_predicted[i][0])])

            f.close()

        except tf.errors.OutOfRangeError:
                print("Kaggle submission data generation is done!\n")
        break


<Training>


1 Training >> Loss: 0.679	Accuracy: 0.00%	Precision: 0.00%	Recall: 0.00%
2 Training >> Loss: 0.666	Accuracy: 79.40%	Precision: 73.21%	Recall: 73.91%
3 Training >> Loss: 0.654	Accuracy: 79.40%	Precision: 73.21%	Recall: 73.91%
4 Training >> Loss: 0.643	Accuracy: 79.40%	Precision: 73.21%	Recall: 73.91%
5 Training >> Loss: 0.633	Accuracy: 79.40%	Precision: 73.21%	Recall: 73.91%
6 Training >> Loss: 0.623	Accuracy: 79.40%	Precision: 73.21%	Recall: 73.91%
7 Training >> Loss: 0.614	Accuracy: 79.43%	Precision: 73.26%	Recall: 73.91%
...
397 Training >> Loss: 0.474	Accuracy: 80.30%	Precision: 75.81%	Recall: 72.24%
398 Training >> Loss: 0.474	Accuracy: 80.30%	Precision: 75.81%	Recall: 72.23%
399 Training >> Loss: 0.474	Accuracy: 80.30%	Precision: 75.82%	Recall: 72.23%
400 Training >> Loss: 0.474	Accuracy: 80.30%	Precision: 75.82%	Recall: 72.23%
Training Session is done!

Cross-Validation >> Loss: 0.506	Accuracy: 80.31%	Precision: 75.82%	Recall: 72.23%
Cross-Validation Session is done!

Test >> Loss: 0.443	Accuracy: 80.30%	Precision: 75.82%	Recall: 72.22%
Test Session is done!

asyncml.zip


댓글
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2024/12   »
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
글 보관함