티스토리 뷰
[논문 요약26] [9] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. TPAMI, 34(4):743–761, 2012. 1, 2, 5, 6
Arc Lab. 2018. 9. 6. 15:43[업데이트 2018.09.06 15:32]
1. 베이스 논문
[논문 요약17] Perceptual Generative Adversarial Networks for Small Object Detection
(http://arclab.tistory.com/172)
Extensive evaluations on the challenging Tsinghua-Tencent 100K [45] and the Caltech [9] benchmark well demonstrate the superiority of Perceptual GAN in detecting small objects, including traffic signs and pedestrians, over well-established state-of-the-arts.
We evaluate our Perceptual GAN method on the challenging Tsinghua-Tencent 100K [45] and the Caltech benchmark [9] for traffic sign and pedestrian detection respectively.
The Caltech benchmark [9] is the most popular pedestrian detection dataset. About 250,000 frames with a total of 350,000 bounding boxes and 2,300 unique pedestrians are annotated. We use dense sampling of the training data (every 4th frame) as adopted in [44, 27]. Following the conventional evaluation setting [9], the performance is evaluated on pedestrians over 50 pixels tall with no or partial occlusion, which are often of very small sizes. The evaluation metric is log-average Miss Rate on False Positive Per Image (FPPI) in [102; 100] (denoted as MR following [42]).
For the Caltech benchmark [9], we utilize the ACF pedestrian detector [7] trained on the Caltech training set for object proposals generation.
Since the pedestrian instances on the Caltech benchmark [9] are often of small scales, the overall performance on it can be used to evaluate the capability of a method in detecting small objects.
2. 레퍼런스 논문
[9] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. TPAMI, 34(4):743–761, 2012. 1, 2, 5, 6
(http://mlsurveys.s3.amazonaws.com/97.pdf)
3. 주요 내용 요약
3.1 레퍼런스 논문 주요 내용
보행자 인식하는 문제는 컴퓨터비전의 주요 해결 문제 중에 하나입니다. 그러나 여러가지 데이터 셋이 사용되고, 평가 방법이 제각각이라 성능에 있어서 비교가 어려운데, 본 논문에서는 평가 등에 활용 될 수 있도록 잘 정리된 보행자 데이터셋과 평가 방법을 제안합니다.
3.2 베이스 논문에서 인용한 내용
Caltech benchmark를 통해 학습 및 검증을 하며, 기존 방법들과 성능을 비교합니다.
- Total
- Today
- Yesterday
- #TensorFlow
- Meow
- GOD
- #ApacheSpark
- Memorize
- 2D Game
- OST
- #ELK Stack
- Ragdoll
- SSM
- sentence test
- Badge
- Jekyll and Hyde
- English
- ILoop Engine
- Game Engine
- docker
- Mask R-CNN
- ate
- belief
- #ApacheZeppelin
- Sea Bottom
- aws #cloudfront
- project
- Library
- 도커
- Worry
- Physical Simulation
- some time ago
- #REST API
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |